Misc - study theoretical philosophy
A short Intro:
I present here a studium generale in theoretical philophy which covers most of the areas where currently most problems in th. philsophy arise.
The descriptions are a mixture between German and English terms but I think everyone can get a grip, I would need more time to evaluate all correct english terms where needed.
It is reasonable, that after 4th semester the students skip one of the main subjects (BioChemistry and physics count of its own), except philosophy itself, and fill it with rehearsals or seminars the students can choose from; but here for ease a general course of study.
The study is intended as something between US highschool/university (even more demanding than German Fachhochschule in hours per week) and German Philosophical studies in the Humboldian idea, ie. every student do the work he thinks should do and how to do.
The whole thing was presumably never studied in detail by anyone this way, but good parts in different kinds of depth are regarded to be essentail to theoretical philsophy by the author. This is meant as a guide, not a version cut into stone....
Comments are preceded by //. Other things like some bracketing is hopefully self explaining.
I apologize for the format presented. It is more meant as an inspiration and I dont want to spent more time to elaborate that...But further details can be provided if requestet.
1. Semester:
Math:
4h Analysis1: Differentials-Integrals/ Folgen and Reihen
Differentials-Integrals; trig. log. Funcs, Stetigkeit; partial Diff./Integr., Gradient, [Stieljtjes Integr.]; KoordTFMs, Tangentialraeume, Implizite Funktion; 'Folgen und Reihen', Taylor, sin/cos..ln, "e"
2h Algebra1: Linear Algebra
THE sense of Algebra, why set TH basics? (are there alternatives?: pro-con preliminary); Numbers, Tuples, Functions; Transformations, linear eq systems, Groups, Bodys (Koerper), Laws of Transitivy, Distrib., ...; Vectors-Tensors-Matrices-Determinanten-Eigenwerte, Eigenvektor
2h Tutorial1: examples - homework
Informatics:
4h - Inform1: Electronic Computer Architecture (the HW basics) + Intro OO Programming
Basics of Comp HW (el. vNeuman-Rechner), arch. Layers; semi cond. base TH - over TTLogic, RAM-ROM-..., harddrive structures, Bin-Hex, bin arithmetic examples, Gleitkomma (IEEE 744), from Registers till Floating Point unit, HW- Stack-Heap - till [VLSR]Chips, Microarchitecture, Bussysteme, InstructionSetArch, Assembler instructions (push/pop), from BIOS to basic OS tasks; a Drivers and Periphals example. Encoding standards (Host-UTF16) (2/3); then (OO)Programming - From goto, over procedural/functional to OO; interpreter vs compiler; OO-prog.design TH (private, overloading, interface vs multiple inhert., ..) with Java (1/3)
//no advanced topics like threads, multicore proces,... and no Tut. necc.
1h Lab1: Introduction to Operating Systems and Programming
SW LAB: Intro to OSystems with: Linux(Unix); basics of: admin, file system, important commands, Intro in shell scripting - write examples (2/3)
+ A practical intro into OSystems and 4GL programming
+ Practical basics of todays Progr Languages (with Java): classical datatypes int-float/char-string/file, arrays, (pointer); programmmming examples (1/3)
Nat Science: // in sem. 1-4 always exp. and th. Physics are combined, in the intro course
4h Phys1: Classical mechanics and special relativity
skalar, vector, matrix, tensor; class. mechanics; Newton und Kreisbewegung; special theory of relativism (1/4) and discuss philo. problems
1h Tut 1: examples - homework
2h Chem1: Intro to anorg. chemistry
Atommodelle, Bindungtypen, Hauptgruppen und einige wichtige Nebengruppen, Isotope
1h Tut: examples, tests,...
Philo:
4h Introduction to TH Philosophy: Intro to Philsophy and History of Science (1) //THE introductury lecture
scope of TH Ph overview, also of non-theor. philo branches: ethics, aestethics,..; methods of different areas of sciences; humananistic vs engeneering vs mental vs empirical vs ...sciences: Kategorosierungen; history of sciences; basic concepts, problems and methods; example philosophical problems of sciences; examples from history to scientific approaches and inventions, Konkurierende Theorien; (Philo, Math. NatSc, Inform each ~1/4); from 0 till 1900. Vom Faustkeil zur Radioaktivitaet
1h Tutorial): historical reading
like Euklid, Newton, D. Hume, Pasteur/Koch, Mendel-Darwin, Mach or...), discussion and examples; tests on understanding and doing summaries (of Vorl. and Tut., also homeworks)
2h Philo1: Foundations of greek classics
Intro (history and streams of classical) Ph., Greeks basics, some chinese philo. (LaoTse, Konfuzius,..?), early medevial TvAquin, till some relevant parts from scholastic (Ockhams razor);
2h Logic1: Introduction to Logic
Intro in logics from a natural language point of view; Aristoteles Syll+History, Propaedeutik (Tugendhat/Wolf); assertional and predicate logic; rhetorical aspects and translation examples; der "Vorsokratischer Luegner", logic in India (see Bochenski)
1h Tut: tests, examples to Logic1
//the only Tutorial in Philo: to learn to learn, remeber and articulate main points of a philsophical standpoint or philo. discussion
Total: 30 h/week
2. Semester:
Math:
4h Anal2: Simple Differential Equations, i and multiple Integrals
complex/imag. numbers and funcs (how can that be?) (1/4); Different. Equ. Klassifizierung, Lsg. einfacher DGLs, Operatoren (1/4); Mehrfachintegrale - Kurvenintegr., FourierInt., Rotation, Integralsaetze Stokes,... (2/4)
2h Alg2: Intro to Discrete Maths and Applied Algebras
Graph TH (types..DACs ), Trees, Latices Theory (Verbandsth.) (1/2); dann: relational Algebra (bags, Codd for rel.DBs) (1/4); Kleene's regular expr. Alg. (1/4)
1h Tut.2: examples - tests
Inform.:
4h Inform.2:Grammars, Graphs and Trees
Intro into formal languages, ContextFGs [see LINK to axiomatic logic], EBNF, Grammar types and design, (Greibach-)Normalforme(n); Regular expr., parser, lexer, basics of a theoretical compiler (till bootstraping trick..) (2/3) then: control structures: recursion, chained lists; Hashmaps, SW- Stacks/queue/sets/bags/vectors..., Sortierprobleme (1/3)
1h Tutorial2: examples-tests
1h LAB: HW-LAB
to semester 1; simple semi-conductor examples like TTLogik, simple electrical circuits design examples (like flip/flop),...(1/2) + HW near programming with assembler, base I/O, driver example
Nat Science:
4h Physics2: Optics and Electrodynamics
classical optics (1/4), then electro dynamics (till 'reunion' of optics with Maxwell), El. und Magnetische Effekte, Dipole, berechne Gleichstromnetze mit Matrizen,...Schwingkreis,...
1h Tut.2: test, examples
1h LAB1: class mech
2h Chem.2: Organics
Intro to org. Chemistry; History (Harnsaeure), base findings and concepts: C chains+rings, alcohol, esther, ... //Tut. in Sem3
Philo:
2h Philo2: Rationalism vs Empiricsm / from Scholastic to Hume
Intro to Metaphysics, Rationalism and Empiricsm: Philo relevance from India for Arabian 'natural Philospy' and Impact of arabs experim. approach to european thought espec. Fr Bacon; Descartes, Montesqieu, Spinoza, Leibniz, J.Locke, Hume [the golden age :-)]
2h ProSeminar1: The 'Greeks'
text analysis + examples, studies and interpretation, write+present summaries
4h Logic2: Formal Logic
formal axiomatic logic systems (Frege Begriffsschrift, Hilbert axioms, Gentzen rule syst., E.L. Post..), proof variants of completenes and ...; Loewenheim-Skolem, Goedel Beweis (interpretation from philos. point of view); Intro to Model TH, 1st and 2nd order Logics (quantification over predicates, ...) with equat.; again nat. lang. translation excersizes and problems, ambiguities of nat lang to/from formalized languages
1h Tut. Logic: examples - tests
Total: 30 h/week
3. Semester:
Math:
4h Anal3: Higher Differntial eq. and Fourier rows
FourierReihen, Konvergenzkriterien; Higher Differntial Eq. (part., nonlin., Dgl.Systeme, Eigenwerte, Besselfunkt.,...); Vektoranalysis, Tangentialverktor, Integralsaetze (Gauss)
2h Alg3: Algebra (III)
refresh Eigenvektoren; Semi groups; Metriken und Normierte Raeume; Dualraum, Multilineare Alg. mit JacobiMatrix, Tangentialraeume, affiner/unitaerer Raum;
2h MathLogic1: The Foundations of Math.Logic
History, Cantors 'Ueberabz.', Basics of Logical mathematics: start Frege, Hilbert Program, Antinomies (with sets), Peano Arithmetic; RusselGoedel axiomatization, Intro to Russels Principia; Intro to TH of recursive funcs (also for Informatics3); Goedel Bew. for Math. and limitations following from that; diskutiere Alternativen...
2h Tut.: Analysis+Alg+MathLog. test/examples
Inform.:
2h Inform3: Algorithms and Computability
Alg. Typen (Devide and Conq., Greedy, ...), good Algors. on Graphs/Trees and Strings (Bipart.Matching,..) (1/4); (k-Band) Turing machines, eq. to (Register machines/Sem1 or Mu-Rec Funcs/Anal3); Church Thesis + lamda calculus; Kostenmaasse; WordProblem, Haltingproblem, Komplexitaetsklassen: (N)P computability, SAT, NEXPTIME, coNP, ...; machine models and automata TH [Transducer?], Typ-x Grammatiken vs deren akzeptierenden Automatentypen; (see 2.Sem), PushDown automata, DEAs und Pumping Lemma; basics of functional programing languages (hint to Lamda calc.) (intro LISP, 1/4)
1h Tut.: test examples
1h LAB: advanced programing (Java) examples with Control Structs.; parser (generator) programing (from 2. Sem) like with AntLR...
Nat Science:
2h Physics3: Class. theromdynamics
2 HSaetze of Thermod.,...+ am Ende Intro in chem. Kinetik
//a followup statistical theoretical ThDyn in main study with full mathematics available
//2h reicht/sufficent, da hier kein weiteres Thema wie relTH vorkommt
1h Tut.: examples, tests
1h LAB2: optics/electro dynamics lab
4h Bio-Chem3: Biochemistry and molecular biology
Intro into chemistry of live processes (1/2): [ Kohlehydrate, Proteine, Nukleinsaeuren, Enzyme, Coenzyme, Lipide, ATP, Energetik, Monomere, ATP-Bildung, Glycose, Biosynthese; molecule interactions in encoding of life (DNS), DNS/RNS-/genetics: DNA Strukturen, Proteine, Translation und Transkritpion, gen code, RNAs, DNA Replikation, Rekombination, Mutation, Klonierung und Sequenzierung, 'Exons und Introns', RNA-Polymerasen, THs from biochem. point of view and the evidences for a 'common decedent'
1h Tut: organic chem. (Sem2, 1/2) examples tests, then biochem. ..
1h ChemLAB: anorg+org chem. exp (Sem1 u Sem2)
Philo:
2h Philo3: From Kant to Wittgenstein - German Idealism till analytical Ph.
KANT, German Idealism, Husserl, Mill, early American pragmatism (Peirce, James); ..till early Wittg and EN analytical Philo (Russel, Moore, Strawson, ..); [what about other?: French, Italian, Czech, ....]
2h ProSeminar2: to Philo2; texts interpret. to philo2, erste (Gruppen-)'Vortraege halten zu Themen...'(ie. presentation of a seminar work)
2h Logic3: Advancements in formal Logics
Intro in classical advanced Logics: Truth TH Tarski; 3valued logics: Lesniewski (temporal) and Heyting - Kleene (Intuit. ideas), pro/con of some mvL extensions...(N.Rescher); Modal Logics and sematics with Kripke Manyworld TH and Hintikka sets, deontic logic (each ~1/3)
1h Tut.: examples and tests
Total: 31 h/week
4. Semester:
Math:
2h Anal4: Function TH, 'Mass Theorie' and Fourier TFM
complex differentiation, Laurentreihen, Cauchy Integralsatz, Residuensatz, Funktionentheorie mehrerer komplexer Variablen (..fuer Quantenfeldtheorie) + Masstheorie, Exkurs: NichtMessbare Mengen (Cohen), Lebesgue-Stieltjes Integral + Dirac Deltafunkt, Faltung, Fourier[/ggf Laplace] TFM (1/3)
1h Tut.: Anal4 tests and examples
2h Algebra 4: Higher Algebras with intro to Topology
Intro in Topologie: topologische Raeume, Hausdorfraeume und Filter/Ultrafilter, metrische Raeume, Vektorraeume, Banachraeume, Hilbertraum (for Physics) (1/2) + Ringe (the plain math algeb. stuff without applic. for xy !); Lie Groups, GruppenTH (Algebra for Quantum TH); "Hierarchische Math. Strukturen", Ordnungs- Topologische und Geometrische Strukturen; KategorienTH + Allgemeine Algebra (1/2)
2h MathLogic2: Modern Math.Logic - axiomatic set TH
ZermeloFraenkel axiomatiz. (curr state of art) with Auswahlaxiom, discuss Auswahlaxiom-Problem..ist es setzbar ?; Zorn Lemma(=analogon zum AuswAx); simple number TH proofs,
induction types, transfinite Induction; finite model TH (for computability TH) and (infinite) Model TH II (followup from logic2)
1h Tut.: Alg4 und MathLogic2, test examples
Informatics:
2h Inform4: Proof-THs and -Engines
Theory of proofs, (un-)Beweisbare Probleme, Post's theorem zB., Berechenbarkeitsprobleme bei Typ-x Grammatiken vs deren akzeptierenden Automatentypen (1/4); (Higher) proof algorithms and realworld SAT-solvers as Beweis-engines (Std GentzenType); Intro Rule Engines with example (zB Jess) (1/2 !); Basics of Logical programming in PROLOG (1/4); Intro to SW-(Model) Checking: Alloy, LinearTime temporal Logic (praktisch NuSMV) and/or ComputationTreeLogic, Hoare-Triples and Proof tableaus (1/4)
2h Practical Inform.: Databases, Networks, Formats, ...
DBtypes, rel.DB (tables, index, types, trigger, ..see relational algebra) and std. SQL(99), simple DB design (1/3); Computer networks HW/SW(TCP/IP), ISO NW Layers, Inet protocol types, Router Algs ) (1/3); XML, XML Schema, HTML(1/3); and maybe some of the following in short: intro to security alg./encryption basics; Backupsicherheit (!); SW Testing-Verfahren (inbes Unit Tests)
1h Tut.: test, examples
1h LAB: functional programming, then logical programming ( LISP=functional programming + PROLOG)
Nat science:
2h Physics4: Atomic physics
Atomic physics-atom the end of 1800, Planck h+Schwarzstrahler, Compton Eff., Nebelkammer, Streuexp Rutherford..., Photoel. effekt, Bohrsche At.Mod, Dual. Welle-Teilch... + Intro to Quantum theory ( Schroedinger Eq., Wahrscheinlichkeitsdichte, Berechng. Atom mit 1 Elektr., Pauli Prinzip, Heisenberg Unschaerfe, Potentialtopf, ..)
2h TH Physics 1: Class. and Analytical Mechancis
General Intro in 'TH' Physics and important mech models: the concepts and methods (paradigmata, not just the same again: why is it "TH" Phys.?), 'Axioms', is it real axiomatization?; classical examples: harm. Osz., starrer Koerper, 2(3) Teilchen Syst., Traegheitstensor, Kreisel-TH, relativ. (kovariante) reformulation of mech.; from Lagrange to Hamillton Mech (Zwangsbed., Eich-TFM, Konfig.-Zustandsraum, Poisson Klammer)
2h Tut.: test, examples
1h LAB: thermodynamics (also do practical thermo. of (an)org. chemcal reactions: physical chem.)
2h Bio.1: Cell biol. and Microbiology
The cell struture and its processes: cytoplasma, Membram, Kern, Endo.Retik., Golgi App., Ly.Kompartiment, Peroxisomen, Mitochond., Rezeptoren und Signalmolekuele, Zellkommunikation,... + Base (non-)cellular automata (virus), x-Koken, ~L-forms; bacteria, Sporen u Pilze; the 3 cellular types, (sligth) broader disc. of archae...(as the oldest ones); Wachstum u 'Fortpfl.', Anpassungsstrategien (zB. Sporenbildung, Regelkreise,..), Stoffwechsel, Energie-gewinnung und -Bindung,... + discuss base THs of evolvement of life on earth (again)!
1h Tut.: tests, examples from molec. biol. Sem3, then mikrobiol.
//Tut. from Biochemistry is allready done !
1h LAB Biochemistry+Microbiology: biochem reactions, DNA technics of molec. biology
Philo:
2h Philo4: Modern "classic" TH philos, TH of science
From Wiener Kreis to late Wittgenstein, Quine-on Empiricsm/Holism/..(Piaget, Putnam, Dummet, Davidson, Dewey,..) modern TH of science T.S.Kuhn, Feyerabend, Popper (Duhem, Weierstrass, Lorentzen, Weyl, Stegmueller, ... )
2h Proseminar3: of Philo3 Vorl., texts interpr., Einzelpresentationen
+1 h/week: for intermediate philos. bachelors work - preparing and consulting with a tutor
Total: 29+1 h/week
=> Intermediate Tests (Math, Inform, natSc., Philo) and intermediate philos. exam work
main studies page
Back to main page